Refine Your Search

Topic

Author

Search Results

Technical Paper

An Analysis of Diesel Spray Characteristics with Small Injection Amount under Similarity Law Condition

2020-01-24
2019-32-0590
In this paper, the Diesel spray characteristics were studied by HS video camera and the Laser Absorbing Scattering (LAS) technique means of the combustion deterioration problem caused by the engine downsizing based on the geometrical similarity was investigated. In the experiments, three Diesel injectors with the hole diameters of 0.07mm, 0.101mm and 0.133mm were used. The injection pressures of the injectors with three different diameters were 45MPa, 93MPa and 160MPa, respectively. The Diffused Background Illumination (DBI) method was employed for the nonevaporating spray experiment to obtain spray tip penetration and spray angle at room temperature. The LAS technique was employed for the evaporating spray experiment to obtain the equivalence ratio distributions, evaporation rate, and vapor phase tip penetration. Moreover, the Wakuri Momentum Theory was applied to analyze the data obtained by both the non-evaporating and the evaporating spray experiments.
Technical Paper

An Analysis of Ambient Air Entrainment into Split Injection D.I. Gasoline Spray by LIF-PIV Technique

2002-10-21
2002-01-2662
Effects of split injection, with a relatively short time interval between the two sprays, on the spray development process, and the air entrainment into the spray, were investigated by using laser induced fluorescence and particle image velocimetry (LIF-PIV) techniques. The velocities of the spray and the ambient air were measured. The cumulative mass of the ambient air entrained into the spray was calculated by using the entrainment velocity normal to the spray boundary. The vortex structure of the spray, formed around the leading edge of the spray, showed a true rotating flow motion at low ambient pressures of 0.1 MPa, whereas at 0.4 MPa, it was not a true rotating flow, but a phenomenon of the small droplets separating from the leading edge of the spray and falling behind, due to air resistance. The development processes of the 2nd spray were considerably different from that of the 1st spray because the 2nd spray was injected into the flow fields formed by the 1st spray.
Technical Paper

A challenge to vapor distribution measurement of multi-component evaporating fuel spray via laser absorption-scattering (LAS) technique

2007-07-23
2007-01-1892
In the present study, a challenge has been made to quantitatively determine the vapor phase concentration distributions in an evaporating multicomponent fuel spray using the LAS imaging technique. The theoretical considerations were particularly given when applying the LAS imaging technique to the multicomponent fuel spray and reconstructing the vapor concentration distributions from the spray images.
Technical Paper

A Visual Study of D.I. Diesel Combustion from the Under and Lateral Sides of an Engine

1986-09-01
861182
A high-speed photographic study is presented illustrating the influence of engine variables such as an introduced air swirl, the number of nozzle holes and the piston cavity diameter, on the combustion process in a small direct-injection (D.I.) diesel engine. The engine was modified for optical access from the under and lateral sides of the combustion chamber. This modification enabled a three-dimensional analysis of the flame motion in the engine. The swirling velocity of a flame in a combustion chamber was highest in the piston cavity, and outside the piston cavity it became lower at the piston top and at the cylinder head in that order. The swirl ratio of the flame inside the cavity radius attenuated gradually with piston descent and approached the swirl ratio outside the cavity radius, which remained approximately constant during the expansion stroke. Engine performance was improved by retarding the attenuation of the swirl motion inside the cavity radius.
Technical Paper

A Practical Calculation Method for Injection Pressure and Spray Penetration in Diesel Engines

1992-02-01
920624
Spray penetration for Diesel injectors, where injection pressure varies with time during the injection period, was calculated. In order to carry out this calculation, the discharge coefficients of the needle-seat opening passage and discharge hole in orifice-type Diesel nozzles were investigated separately. Simple empirical correlations were obtained between these coefficients and needle lift. Then, by introducing these correlations, the injection pressure, which is defined as the pressure in the sac chamber just upstream of the discharge hole, was either derived from measured fuel supply line pressure, or predicted by means of an injection system simulation. Finally, based on the transient injection pressure, spray tip penetration was calculated by taking the overall line which covers the trajectories of all fuel elements ejected during the injection period.
Technical Paper

A Numerical Study on the Effects of the Orifice Geometry between Pre- and Main Chamber for a Natural Gas Engine

2017-10-08
2017-01-2195
The spark-ignited pre-chamber stratified combustion system is one of the most effective ways of expanding lean-burn ability and improving the performance of a natural gas engine. For these pre-chamber engines, the geometrical structure of orifices between the pre- and main chamber plays a significant role on the gas flow and flame propagation behaviors. The present study aims to investigate the effects of orifice number and diameter on combustion characteristics of a Shengdong T190 natural gas engine through CFD simulation. Various geometrical structures for the pre-chamber orifices were designed, offering variations in the number of orifices (4 to 8), and in the diameter of orifices (1.6mm to 2.9mm). A non-dimensional parameter β was employed to characterize the relative flow area of the orifices in the design. CFD simulations of combustion processes for these designs were carried out using a simplified chemical reaction kinetic mechanism for methane.
Technical Paper

3-D PIV Analysis of Structural Behavior of D.I. Gasoline Spray

2001-09-24
2001-01-3669
Three-dimensional behaviors of direct injection (D.I.) gasoline sprays were investigated using 2-D and 3-D particle image velocimetry (PIV) techniques. The fuel was injected with a swirl type injector for D.I. gasoline engines into a constant volume chamber in which ambient pressure was varied from 0.1 to 0.4 MPa at room temperature. The spray was illuminated by a laser light sheet generated by a double-pulsed Nd:YAG laser (wave length: 532 nm) and the succeeding two tomograms of the spray were taken by a high-resolution CCD camera. The 2-D and 3-D velocity distributions of the droplet cloud in the spray were calculated from these tomograms by using the PIV technique. The effects of the swirl groove flows in the injector and the ambient pressure on the structural behavior of the droplet cloud in the spray were also examined.
Technical Paper

2-D Measurements of the Liquid Phase Temperature in Fuel Sprays

1995-02-01
950461
Cross-sectional distributions of the liquid phase temperatures in fuel sprays were measured using a laser-induced fluorescence technique. The liquid fuel (n-hexadecane or squalane) was doped with pyrene(C16H10). The fluorescence intensity ratios of the pyrene monomer and excimer emissions has temperature dependence, and were used to determine the liquid phase temperatures in the fuel sprays. The measurements were performed on two kinds of sprays. One was performed on pre-heated fuel sprays injected into surrounding gas at atmospheric conditions. The other was performed on fuel sprays exposed to hot gas flow. The spray was excited by laser radiation at 266nm, and the resulting fluorescence was imaged by an intensified CCD camera. The cross-sectional distribution of the liquid phase temperature was estimated from the fluorescence image by the temperature dependence of the intensity ratio.
X